SOC

Surgery on Children Journal aims to publish issues related to Pediatric Surgery, Pediatric Neurosurgery, Pediatric Plastic Surgery, Pediatric Cardiovascular Surgery, Pediatric Orthopedic Surgery, Pediatric Vascular Surgery, Pediatric Gynecology and Obstetrics, Pediatric Ear Nose Throat, Ophthalmology, Pediatric Anesthesiology and Reanimation, Pediatric Urology, Pediatric Surgical Intensive Care Clinic, and other clinical surgery fields on children of the highest scientific and clinical value at an international level and accepts articles on these topics.

Index
Review
The role of nuclear medicine techniques; Tc-99m-labeled dimercaptosuccinic acid, diethylenetriaminepentaacetic acid, and mercaptoacetyltriglycine scintigraphies in pediatric surgery
The purpose of this review is to highlight the pivotal role of nuclear medicine in pediatric surgery, specifically in the diagnosis and management of nephro-urological conditions. This review focuses on the applications and advantages of three key nuclear medicine techniques: Tc-99m dimercaptosuccinic acid (DMSA), Tc-99m diethylenetriaminepentaacetic acid (DTPA), and Tc-99m mercaptoacetyltriglycine (MAG3) scintigraphies. These imaging modalities are crucial for providing detailed anatomical and functional information with minimal invasiveness, essential for evaluating congenital anomalies, urinary tract infections, and obstructive uropathies in children. DMSA Scintigraphy is established as the gold standard for detecting renal cortical scarring and assessing functional renal parenchymal damage. It offers superior sensitivity and specificity compared to other imaging techniques, making it indispensable for identifying renal scars from recurrent urinary tract infections or pyelonephritis. DTPA Scintigraphy is critical for measuring glomerular filtration rate (GFR) and analyzing renogram curves, providing quantitative assessments of renal function. It effectively evaluates renal perfusion and identifies perfusion defects and renal ischemia, essential for managing conditions like renal artery stenosis and unilateral kidney disease. MAG3 Scintigraphy excels in dynamic renal scintigraphy, particularly in patients with impaired renal function. It provides high-quality images and superior diagnostic capability, making it invaluable for assessing ureteropelvic junction obstruction and other obstructive uropathies in pediatric patients. The review concludes by emphasizing the integration of these scintigraphy techniques with SPECT/CT, enhancing diagnostic accuracy and providing comprehensive anatomical and functional insights. Despite concerns regarding radiation exposure, measures such as dose optimization and advanced imaging techniques ensure safety and efficacy in pediatric applications.


1. Santos AI, Ferreıra RT. Nuclear medicine and pediatric nephro-urology: a long-lasting successful partnership. Quarterly J Nuclear MedMol Imag. 2024;68(1):3-22.
2. Dhull RS, Joshi A, Saha A. Nuclear ımaging in pediatric kidneydiseases. Indian Pediatr. 2018;55(7):591-597.
3. Elgazzar AH. Basis of pediatric genitourinary imaging. In: ElgazzarAH, ed. The Pathophysiologic Basis of Nuclear Medicine. SpringerBerlin Heidelberg; 2006:509-520.
4. Rushton HG, Majd M. Dimercaptosuccinic acid renal scintigraphy forthe evaluation of pyelonephritis and scarring: a review of experimentaland clinical studies. J Urol. 1992;148(5 Part 2):1726-1732.
5. Marceau-Grimard M, Marion A, Côté C, Bolduc S, Dumont M, MooreK. Dimercaptosuccinic acid scintigraphy vs. ultrasound for renalparenchymal defects in children. Can Urol Assoc J. 2017;11(8):260-264.
6. Salan A, Menzilcioglu MS, Guler AG, Dogan K. Comparison ofshear wave elastography and dimercaptosuccinic acid renal corticalscintigraphy in pediatric patients. Nucl Med Commun. 2023;44(8):691-696.
7. Freeman CW, Altes TA, Rehm PK, et al. Unenhanced MRI as analternative to 99mTc-labeled dimercaptosuccinic acid scintigraphyin the detection of pediatric renal scarring. AJR Am J Roentgenol.2018;210(4):869-875.
8. Jang SJ, Choi BS, Choi SH. Evaluation of renal function in obstructedureter model using 99mTc-DMSA. In Vivo. 2020;34(5):2431-2435.
9. Einarsdóttir HS, Berg RMG, Borgwardt L. Interrater reliability of99mTc-DMSA scintigraphy performed as planar scan vs. SPECT/low dose CT for diagnosing renal scarring in children. Diagnostics.2020;10(12):1101.
10. Hosokawa T, Uchiyama M. Complete remission of renal scarring infollow-up DMSA renal scintigraphy after urinary tract ınfection. ClinPediatr (Phila). 2023:99228231206707.
11. Shaikh N, Spingarn RB, Hum SW. Dimercaptosuccinic acidscan or ultrasound in screening for vesicoureteral reflux amongchildren with urinary tract infections. Cochrane Database Syst Rev.2016;2016(7):CD010657.
12. Fidan K, Kandur Y, Buyukkaragoz B, Akdemir UO, Soylemezoglu O.Hypertension in pediatric patients with renal scarring in associationwith vesicoureteral reflux. Urology. 2013;81(1):173-177.
13. Çelikkaya ME, Atıcı A, Atılgan Hİ. The Efficacy of Tc-99m DMSAscintigraphy in children with vesicoureteral reflux accompanyingfrequent urinary tract ınfection. Middle Black Sea J Health Sci.2019;5(3):252-257.
14. Treves S, Heyman S. Pediatric Nuclear Medicine II. Pediatr Rev.1979;1(4):109-115.
15. Snead EC, Milo JE, McCrea CA, et al. Tikhonov gamma variate adaptiveregularization applied to technetium Tc 99m diethylenetriaminepentaacetic acid plasma clearance, compared with three othermethods, for measuring glomerular filtration rate in cats. Am J Vet Res.2019;80(4):416-424.
16. Ma H, Gao X, Yin P, et al. Semi-quantification of renal perfusion using99mTc-DTPA in systolic heart failure: a feasibility study. Ann NuclMed. 2021;35(2):187-194.
17. Ratnasari D, Nazir F, Toresano LOHZ, Pawiro SA, Soejoko DS. Thecorrelation between effective renal plasma flow (ERPF) and glomerularfiltration rate (GFR) with renal scintigraphy 99m Tc-DTPA study. J PhysConf Ser. 2016;694:012062.
18. Kim H, Kim JK, Kim JH, et al. Comparison of differential functionaloutcomes after partial nephrectomy between moderate and highcomplex renal tumor evaluated with diethylenetriamine pentaaceticacid scan: a propensity score matched analysis. Ann Surg Oncol.2022;29(2):1476-1485.
19. Yu H, Kim H, Shin HS, Lee HS. Prediction of renal functionimprovement in azotemic patients using glomerular filtration ratefrom 99mTc-DTPA renal scan: an observational study. Medicine.2021;100(51):e28332.
20. De Palma D. Comment on the paper ‘Prospective pediatric studycomparing glomerular filtration rate estimates based on motion-robustdynamic contrast-enhanced magnetic resonance imaging and serumcreatinine (eGFR) to 99mTc DTPA.’ Pediatr Radiol. 2021;51(5):849-849.
21. Danilczuk A, Nocun A, Chrapko B. Normal ranges of renal functionparameters for 99mTc-EC renal scintigraphy. Nuclear Med Rev.2020;23(2):53-57.
22. Carapinha MJ, Silva RFM, Silva FAB, Figueiredo S, Vieira L.Quantitative estimation of the renal tubular function with 99mTc-MAG3: comparative software approach using two methods in apediatric population. Eur J Nucl Med Mol Imaging. 2019;46. https://api.semanticscholar.org/CorpusID:214477096
23. Al-Shaqsi Y, Peycelon M, Paye-Jaouen A, et al. Evaluatingpediatric ureteropelvic junction obstruction: Dynamic magneticresonance urography vs renal scintigraphy 99m-technetiummercaptoacetyltriglycine. World J Radiol. 2024;16(3):49-57.
24. Hashim H, Woodhouse CRJ. Ureteropelvic junction obstruction. EurUrol Suppl. 2012;11(2):25-32.
25. Lee JN, Kang JK, Jeong SY, et al. Predictive value of cortical transit timeon MAG3 for surgery in antenatally detected unilateral hydronephrosiscaused by ureteropelvic junction stenosis. J Pediatr Urol. 2018;14(1):55.e1-55.e6.
26. Danilczuk A, Nocun A, Chrapko B. Normal ranges of renal functionparameters for 99mTc-EC renal scintigraphy. Nucl Med Rev Cent EastEur. 2020;23(2):53-57.
27. Lavocat MP, Granjon D, Allard D, Gay C, Freycon MT, Dubois F.Imaging of pyelonephritis. Pediatr Radiol. 1997;27(2):159-165.
28. Shaikh N, Ewing AL, Bhatnagar S, Hoberman A. Risk of renal scarringin children with a first urinary tract ınfection: a systematic review.Pediatrics. 2010;126(6):1084-1091.
29. Oh KE, Yim HE, Yoo KH. Vesicoureteral reflux and renal scarringin children with acute pyelonephritis: the role of late 6-monthdimercaptosuccinic acid renal scan. Child Kidney Dis. 2020;24(2):98-106.
30. Lee J, Woo BW, Kim HS. Prognostic factors of renal scarring on follow-up DMSA scan in children with acute pyelonephritis. Child Kidney Dis.2016;20(2):74-78.
31. Ramachandrappa RG, Keshavamurthy ML, Siddaraju ML. Renalnuclear isotope study using dimercaptosuccinic acid in evaluating renalparenchymal changes in urinary tract infection in children. Indian JChild Health (Bhopal). 2017;4(1):61-63.
32. Şahin Ö, Taşbent F. Comparison of DMSA scintigraphy and USG indetecting renal cortical scars in children with urinary tract ınfection. JPediatr Infect Dis. 2018;13(03):210-215.
33. Xiaojia PU; Wei HU; Kejing SHAO; Fei WANG; Bao ZHU. Comparisonof the relative renal function evaluated by 99 Tcm-DMSA and 99 Tcm-DTPA imaging in children with acute urinary tract infection. Chinese JNuclear Med Mol Imag. 2019;39(12):739-742.
34. Zappia JL, Farrow JM, Song L, et al. Outcomes of robot-assistedlaparoscopic pyeloplasty based on degree of obstruction on preoperativeTc-99 MAG-3 renal scintigraphy. J Endourol. 2023; 37(2):151-156.
35. Montgomery JR, Brown CS, Zondlak AN, et al. CT-measured corticalvolume ratio ıs an accurate alternative to nuclear medicine split scanratio among living kidney donors. Transplantation. 2021;105(12):2596-2605.
36. Dhull RS, Joshi A, Saha A. nuclear imaging in pediatric kidney diseases.Indian Pediatr. 2018;55(7):591-597.
37. Kusmierek J, Pietrzak-Stelmasiak E, Bienkiewicz M, et al. Diagnosticefficacy of parametric clearance images in detection of renal scarsin children with recurrent urinary tract infections. Ann Nucl Med.2015;29(3):313-318.
38. Napolitano M, Ravelli A. Urinary tract ınfections in ınfants andchildren. In: Imaging and Intervention in Urinary Tract Infections andUrosepsis. Springer International Publishing; 2018:231-246.
39. Ramos CD, Onusic DM, Brunetto SQ, et al. Technetium-99m-dimercaptosuccinic acid renal scintigraphy and single photon emissioncomputed tomography/computed tomography in patients with sicklecell disease. Nucl Med Commun. 2019;40(11):1158-1165.
40. Aksoy SY, Vatankulu B, Uslu L, Halac M. Depiction ofventriculoperitoneal shunt obstruction with single-photon emissioncomputed tomography/computed tomography. Indian J Nucl Med.2016;31(3):246-247.
41. Frane N, Bitterman A. Radiation Safety and Protection. 2024.
42. Sammer MBK, Sher AC, States LJ, Trout AT, Seghers VJ. Currenttrends in pediatric nuclear medicine: a Society for Pediatric Radiologymembership survey. Pediatr Radiol. 2020; 50(8): 1139-1147.
43. Loginoff J, Augustynowicz K, Swiader K, et al. Advancements inradiology and diagnostic imaging. J Educ Health Sport. 2023;33(1):45-51.
44. Kusmirek JE, Magnusson JD, Perlman SB. Current applications fornuclear medicine ımaging in pulmonary disease. Curr Pulmonol Rep.2020;9(3):82-95.
45. Djekidel M, Govindarajan KK. Nuclear medicine pediatric assessment,protocols, and interpretation. In:StatPearls [Internet]. StatPearlsPublishing, 2024.
46. Parikh KR, Davenport MS, Viglianti BL, Hubers D, Brown RKJ. Cost-savings analysis of renal scintigraphy, stratified by renal functionthresholds: mercaptoacetyltriglycine versus diethylene triamine penta-acetic acid. J Am Coll Radiol. 2016;13(7):801-81.
Volume 1, Issue 3, 2024
Page : 63-70
_Footer